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Introduction



What is regression discontinuity design (RDD)?

e Donald Campbell, educational psychologist, invented regression discontinuity

design but then it went dormant for decades

e Angrist and Lavy (1999) and Black (1999) independently rediscover it

o |t has become incredibly popular in economics
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Tell me what you think is happening

Panel B. Intention-to-Treat
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Running example from Mexico 1

American Economic Journal: Applied Economics 2020, 12(4): 164—195
https://doi.org/10.1257/app.20190002

Rules for Recovery: Impact of Indexed Disaster Funds on
Shock Coping in Mexico'

By ALEJANDRO DEL VALLE, ALAIN DE JANVRY, AND ELISABETH SADOULET*

Government provision of disaster transfers is typically hampered by
liquidity constraints and by weak rules and administrative capacity
to disburse reconstruction resources. We show that by easing these
hurdles, Mexico’s indexed disaster fund (Fonden) considerably
accelerates economic recovery after a disaster. To estimate Fonden
impact on recovery, as measured by night lights, we exploit the
heavy rainfall index that determines program eligibility. We find that
for one year after a disaster, eligible municipalities are 6 percent
brighter than those ineligible, with gains likely concentrated among
less resilient municipalities. We additionally document how Fonden
rules shield resources from political abuse. (JEL G22, H12, H84,
013, 018, Q54, R38)



What is a regression discontinuity design?

e Goal: estimate some causal effect of a treatment on some outcome

e Problem: Selection bias (i.e., E[Y?|D = 1] # E[Y°|D = 0]])

e RDD basic idea: if treatment assignment occurs abruptly when some underlying
variable X (the “running variable") passes a cutoff ¢y, then we can use that
arbitrary rule to estimate the causal effect even of a self-selected treatment



Arbitrary rules

e Firms, schools and govt agencies assign “things” based on arbitrary thresholds of

continuous variables

e Consequently, probabilities of treatment will “jump” when that running variable

exceeds a known threshold

Academic test scores: scholarships or prizes, higher education admission, certificates
of merit

Poverty scores: (proxy—)means—tested anti-poverty programs (generally: any program
targeting that features rounding or cutoffs)

Land area: fertilizer program or debt relief initiative for owners of plots below a
certain area

Date: age cutoffs for pensions; dates of birth for starting school with different
cohorts; date of loan to determine eligibility for debt relief

Elections: fraction that voted for a candidate of a particular party



Selection examples and solutions from the literature

Think of these in light of a treatment where E[Y°|D = 1] # E[Y°|D = 0]

Yelp rounded a continuous score of ratings to generate stars

US targeted air strikes in Vietnam using rounded risk scores

Universal healthcare after age 65

When a newborn’s birthweight is below 1,500 grams it gets intensive medical care



Sharp vs. Fuzzy RDD

e There's traditionally thought to be two kinds of RD designs:

1. Sharp RDD: Treatment is a deterministic function of running variable, X

2. Fuzzy RDD: Discontinuous “jump” in the probability of treatment when X > cg.
Cutoff is used as an instrumental variable for treatment

e Fuzzy is a type of IV strategy and requires explicit IV estimators like 2S5LS



Sharp Design



Treatment assignment in the sharp RDD

Deterministic treatment assignment (“sharp RDD”
In Sharp RDD, treatment status is a deterministic and discontinuous function of a

covariate, X;:
1if X,' Z (@)
0if Xi<oq
where ¢y is a known threshold or cutoff. In other words, if you know the value of X; for

a unit 7, you know treatment assignment for unit / with certainty.



Treatment effect definition and estimation

Definition of treatment effect
The treatment effect J, is the discontinuity in the conditional expectation function:

0 = /imXi%COE[Yil‘Xi = c] — /imcoeX,-E[YiO‘Xi = )
= limx,—¢, E[Yi|Xi = co] — lime,ex; E[Yi|X; = co]

Average causal effect of the treatment at the discontinuity

Ssrp = E[Y}' — Y?|Xi = o]

T is correlated with X and deterministic function of X; overlap only occurs in the limit
and thus the treatment effect is in the limit as X approaches ¢



Simulations!

## Basic RD Model

N=1000 #number of observations

X=runif (N,-5,5)

YO <- rnorm(n=N, mean=X, sd=1) # control potential outcome
Y1 <- rnorm(n=N, mean=X+2, sd=1) # treatment potential outcome
#You only get treatment if X>O0

Treatment=(X>=0)

#What we observe

Y=Y1*Treatment+YO*x(1-Treatment)
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Treatment assignment
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Potential outcomes (Y;)
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Potential outcomes (Y;)
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Potential outcomes (Y, and Y;)
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Observed outcomes
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RDD estimator
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RDD estimator
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Observed outcomes (Y)
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Equivalent to estimating Y; =a +6T; +¢; for =1 < X; <1 via OLS
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Observed outcomes (Y)
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Equivalent to estimating Y; =a + 6 T; + ¢; for —0.5 < X; < 0.5 via OLS
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Extrapolation



Extrapolation

e In RDD, the counterfactuals are conditional on X

e We use extrapolation in estimating treatment effects with the sharp RDD because
we do not have overlap

o Left of cutoff, only non-treated observations, T; = 0 for X < ¢y
e Right of cutoff, only treated observations, T; =1 for X > ¢
e The extrapolation is to a counterfactual

24



Approximate the limiting parameter using units left and right of the cutoff
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Equivalent to estimating Y; = a + 6 T; + ¢; for =5 < X; <5 via OLS



Approximate the limiting parameter using units left and right of the cutoff
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Equivalent to estimating Yi = a+ 8Xi + AX;« T; +0T; +&; for =5 < X; < 5 via OLS



Smoothness assumption




Key identifying assumption

Smoothness (or continuity) of conditional expectation functions (Hahn, Todd

and Van der Klaauw 2001)
E[Y?|X = co] and E[Y}|X = o] are continuous (smooth) in X at ¢

Potential outcomes not actual outcomes

If population average potential outcomes, Y1 and Y©, are smooth functions of X

through the cutoff, ¢g, then potential average outcomes won't jump at ¢p.

Implies the cutoff is exogenous — i.e., nothing else changes related to potential

outcomes at ¢

Unobservables are evolving smoothly, too, through the cutoff



Smoothness is the identifying assumption and untestable

e The smoothness assumption allows us to use average outcome of units right
below the cutoff as a valid counterfactual for units right above the cutoff

e Extrapolation is allowed if smoothness is credible, and extrapolation is nonsensical
if smoothing isn't credible

e Why not directly testable? Because potential outcomes are not observable



Approximate the limiting parameter using units left and right of the cut
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Approximate the limiting parameter using units left and right of the cutoff
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Estimation




Re-centering the data

e It is common for authors to transform X by “centering” at ¢p:

Yi=a+B(Xi—c) + AMXi—co) * Ti +0T; +¢;

e This doesn't change the interpretation of the treatment effect — only the
interpretation of the intercept.



Nonlinearities




Nonlinearity bias

e Smoothness and linearity are different things.

e What if the trend relation E[Y?|X;] does not jump at cp but rather is simply
nonlinear?

e Then your linear model will identify a treatment effect when there isn't because
the functional form had poor predictive properties beyond the cutoff

e Let's look at a simulation



Simulations!

## Non linear RD

N=1000 #number of observations

X=runif (N,-2,2)

X2=X*X

X3=X*xX*X

#You only get treatment if X>O0
Treatment=(X>=0)

#DGP (noticce there is no treatment effect)
Y=1+0*Treatment -4*X+X2+X3+rnorm (N)
#Constant Models

Const1=1m(Y " Treatment)
Const2=1m(Y " Treatment ,subset=abs (X)<1)
Const3=1m(Y " Treatment ,subset=abs (X)<0.5)
Const4=1m(Y " Treatment ,subset=abs(X)<0.1)
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Non-Linear

Observed outcomes (Y)

-2 =il 0 1 2
Running variable

Dashed lines are extrapolations



(1) (2) (3) (4)

Treatment —4.15%** —3.64*** —2.03*** —0.74%**
(0.11) (0.12) (0.15) (0.24)
Constant 4 .45%** 3.18%** 2.02%* 1.24%**
(0.08) (0.09) (0.11) (0.19)
Sample Full |IX| <1 |X] < 0.5 |X| < 0.1
Observations 1,000 508 243 48

Note: *p<0.1; *p<0.05; **p<0.01



Simulations!

#Linear Models

Linear1=1m(Y " Treatment+X+X*Treatment)
Linear2=1m(Y " Treatment+X+X*Treatment ,subset=abs (X)<1)
Linear3=1Im(Y Treatment+X+X*Treatment ,subset=abs(X)<0.5)
Linear4=1m(Y Treatment+X+X*Treatment ,subset=abs(X)<0.1)
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Non-Linear
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(1) () (3) (4)

Treatment —3.30%"** —0.45** 0.10 —1.35%**
(0.17) (0.18) (0.25) (0.48)
X —2.39%** —4.21%** —5.82%** 8.73
(0.11) (0.21) (0.64) (6.57)
X*Treatment 4.08*** 2.33%** 3.27%** —4.34
(0.15) (0.30) (0.85) (8.86)
Constant 1.97*** 0.95*** 0.56*** 1.63***
(0.12) (0.13) (0.19) (0.35)
Sample Full |X| <1 |X| < 0.5 |X] < 0.1
Observations 1,000 508 243 48

Note: *p<0.1; *p<0.05; **p<0.01



Sharp RDD: Nonlinear Case

e Suppose the nonlinear relationship is E[Y?|X;] = f(X;) for some reasonably
smooth function 7(X;)

e In that case we'd fit the regression model:

Yi = f(X;)+0T; +ni

e There are 2 common ways of approximating f(X;)



Nonlinearities

“higher order polynomials” but problematic due to overfitting. Gelman and Imbens
2018 recommend at best a quadratic

1. Use global and local regressions with f(X;) equalling a p*" order polynomial

Yi = a+ 0T+ Buxi+ Box? + Axi* T+ dox? + T + 1

2. Or use some nonparametric kernel method (we won't cover that)



General case




Different polynomials on the 2 sides of the discontinuity

e We can generalize the function, f(x;), by allowing it to differ on both sides of the
cutoff by including them both individually and interacting them with T;.

e In that case we have:

E[Y2X] = a+ BorXi+ BoaX?+ -+ BopXP
EIYHX] = a+6+ BuXi+ BraX? + -+ B1pXP

where X; is the centered running variable (i.e., Xi — ).

e Re-centering at ¢y ensures that the treatment effect at X; = ¢ is the coefficient

on T; in a regression model with interaction terms



Different polynomials on the 2 sides of the discontinuity

e To derive a regression model, first note that the observed values must be used in
place of the potential outcomes:

E[Y[X] = E[Y°IX] + (E[Y!|X] - E[Y°IX]) T

e Regression model you estimate is:

Yi = a+ Bk + Pk + -+ PopXl
6T+ B Ti% + By Ti%e + -+ By Ti%P + e

where 57 = f11 — PBo1, B3 = B21 — P21 and B = B1p — Bop

e The treatment effect at ¢ is



Non-Linear
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(1) (2 (3) (4)
Treatment 0.71%** 0.05 —0.67* —0.49
(0.19) (0.26) (0.37) (0.79)
X —6.85*** —6.24%** 1.02 —20.48
(0.31) (0.87) (2.54) (28.64)
X2 —2.23%** —1.96%* 13.40%** —289.92
(0.15) (0.82) (4.82) (276.63)
X*Treatment 1.24%** 3.43%** —1.36 4.82
(0.44) (1.18) (3.45) (36.76)
X2*Treatment 5.84%** 2.88%* —17.78*** 493.05
(0.21) (1.12) (6.57) (357.01)
Constant 0.44%** 0.60*** 1.16%** 1.14*
(0.14) (0.19) (0.28) (0.59)
Sample Full [X] <1 [X| <05 [X] <0.1
Observations 1,000 508 243 48

Note:

*p<0.1; **p<0.05; ***p<0.01



Testing for violations




Robustness against what?

e Are you done now that you have your main results? No

e You main results are only causal insofar as smoothness is a credible belief, so you
need to convince the reader this is true

e You must now scrutinize alternative hypotheses that are consistent with your main
results through sensitivity checks, placebos and alternative approaches

45



Main Challenges

e Classify your concern regarding smoothness violations into two categories:

e Manipulation on the running variable

e Endogeneity of the cutoff

e Most robustness is aimed at building credibility around these



Manipulation of your running variable score

e Treatment is not as good as randomly assigned around the cutoff, ¢y, when
agents can “perfectly” manipulate their running variable. This happens when:

1. The assignment rule is known in advance
2. Agents are interested in adjusting

3. Agents have the time/ability to adjust

e Since necessarily treatment assignment is no longer independent of potential
outcomes, it's likely this implies smoothness has been violated



A badly designed RCT

e Suppose a doctor randomly assigns heart patients to statin and placebo to study
the effect of the statin on heart attacks within 10 years

e Patients are placed in two different waiting rooms, A and B, and plans to give
those in A the statin and those in B the placebo

e The doors are unlocked and movement between the two can happen



McCrary Density Test

We would expect waiting room A to become crowded. In the RDD context, sorting on
the running variable implies heaping on the “good side” of ¢y

e McCrary (2008) test: under the null the density should be continuous at the cutoff

e Under the alternative hypothesis, the density should increase at the “good side”
of ¢

1. Partition the running variable into bins and calculate frequencies in each bin

2. Treat those frequency counts as dependent variable in an RD regression

e You need no jump to “pass” this test



McCrary density test

e The McCrary Density Test has become mandatory for every analysis using RDD.

e You can install rdrobust for Stata/R, and it will implement the test



McCrary density test
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Panel C is density of income when there is no pre-announcement and no manipulation. Panel D is the density of
income when there is pre-announcement and manipulation. From McCrary (2008).



McCrary density test — FONDEN running example
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McCrary density test — FONDEN running example
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Caveats about McCrary Density Test

e For RDD to be useful, you need to know something about the mechanism
generating the running variable and how susceptible it could be to manipulation

e A discontinuity in the density is “suspicious” — it suggests manipulation of X
around the cutoff is probably going on. In principle one doesn't need continuity.

e This is a data-hungry test. You need a lot of observations at ¢y to distinguish a

discontinuity from noise



Visualizing manipulation — Proxy means test in Colombia

American Economic Journal: Economic Policy 3 (May 2011): 41-65
http:/fwww.aeaweb.org/articles.php ?doi=10.1257/pol.3.2.41

Manipulation of Social Program Eligibility”

By ADRIANA CAMACHO AND EMILY CONOVER*

We document how manipulation of a targeting system for social wel-
fare programs evolves over time. First, there was strategic behavior
of some local politicians in the timing of the household interviews
around local elections. Then, there was corrupt behavior with the
sudden emergence of a sharp discontinuity in the score density,
exactly at the eligibility threshold, which coincided with the release
of the score algorithm to local officials. The discontinuity at the
threshold is larger where mayoral elections are more competitive.
While cultural forces are surely relevant for corruption, our results
also highlight the importance of information and incentives. (JEL
D72,132,138, 015, O17).



Visualizing manipulation — Proxy means
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Visualizing manipulation — Proxy means test in Colombia
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Visualizing manipulation — Proxy means test in Colombia
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FIGURE 1. POVERTY INDEX SCORE DISTRIBUTION 1994-2003, ALGORITHM DISCLOSED IN 1997

Notes: Each figure corresponds to the interviews conducted in a given year, restricting the sample to urban house-
holds living in strata levels below four. The vertical line indicates the eligibility threshold of 47 for many social
programs.



Endogeneous cutoffs: Evaluating smoothness through balance

Balance tests and placebo tests are related but distinct

We can't directly test smoothness because we don't observe potential outcomes

RD is like a “local RCT": Average values of exogenous covariates shouldn't jump
around the cutoff

Balance tests are indirect searching for evidence supporting smoothness



Balance implementation

Don't make it hard — do what you did to Y, only to Z

Choose other noncolliders associated with potential outcomes, Z

Create similar graphical plots as you did for Y

Could also conduct the parametric and nonparametric estimation on Z

You do not want to see a jump around the cutoff, ¢
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Balance — FONDEN running example

Estimated discontinuity (SD units)
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Placebos at non-discontinuous points

Placebos in time are common with panels; placebo in running variables are their
equivalent in RDD

Imbens and Lemieux (2010) suggest we look at one side of the discontinuity (e.g.,
X < @), take the median value of the running variable in that section, and
pretend it was a discontinuity, ¢}

Then test whether in reality there is a discontinuity at ¢}. You do not want to
find anything.

Remember: smoothness at placebo points is neither necessary nor sufficient for
smoothness in the potential outcomes at the cutoff



Balance — FONDEN running example
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Figure A12: Intention-to-treat (placebo)

Note: The figure plots the log difference night lights, between two years before an event
(months -24 to -13) and the year before (months -12 to -1), as a function of the running
variable (rainfall minus threshold). The support of the running variable has been partitioned
into disjoint bins. The number of bins is selected to minimize the integrated mean square
error of the underlying regression function, as described in Calonico, Cattaneo and Titiunik
(2015). The circles plot the local mean of the outcome at the mid-point of each bin. The error
bars are the 95% confidence intervals for the local means. The solid lines are fourth-order
global polynomials fits (estimated separately on each side of the threshold). Observations to
the right of the vertical dashed line are eligible for Fonden under the heavy rainfall criteria.



Fuzzy design




Fuzzy RDD, IV and ITT

e Fuzzy RDD is an IV estimator, and requires those assumptions

e You may be more comfortable with presenting the intent-to-treat (ITT) parameter
which is just the reduced form regression of Y on Z, therefore

e Many papers will not present an IV-style parameter, but rather a blizzard of ITT
parameters, out of a “fear” that the exclusion restrictions may not hold

e But let's review the IV approach anyway for completeness (more IV to come!)

65



Probability of treatment jumps at discontinuity

Probabilistic treatment assignment (i.e. “fuzzy RDD”)
The probability of receiving treatment changes discontinuously at the cutoff, ¢y, but

need not go from 0 to 1
limx, o Pr(Ti = 1|1 Xi = o) # limgx, Pr(T; = 1|X; = )

Examples: Incentives to participate in some program may change discontinuously at
the cutoff but are not powerful enough to move everyone from non participation to
participation.



Deterministic (sharp) vs. probabilistic (fuzzy)

e In the sharp RDD, T; was determined by X; > ¢y

e In the fuzzy RDD, the conditional probability of treatment jumps at ¢p.

e The relationship between the conditional probability of treatment and X; can be

written as:
P[T; = 1|1Xi] = go(Xi) + [g1(Xi) — &o(X)]Zi

where Z; = 1 if (X; > ¢p) and 0 otherwise.



Instrumental variables

e As said, fuzzy designs are numerically equivalent and conceptually similar to IV
(Instrument T with X and X > )

e “Reduced form” Numerator: “jump” in the regression of the outcome on the

running variable, X.

e “First stage” Denominator: “jump” in the regression of the treatment indicator on

the running variable X.

e Same |V assumptions, caveats about compliers vs. defiers, and statistical tests
that we discussed with instrumental variables apply here



Wald estimator

Wald estimator of treatment effect under Fuzzy RDD
Average causal effect of the treatment is the Wald IV parameter

/imx_>COE[Y|X = Co] — /I'mq)(_xE[Y‘X = Co]
/imx_>COE[T|X = Co] — /imco<—XE[T|X = Co]

5Fuzzy RDD —



Limitations of the LATE

e Fuzzy RDD has assumptions of all standard IV framework (exclusion,

independence, nonzero first stage, and monotonicity)

e As with other binary IVs, the fuzzy RDD is estimating LATE: the local average
treatment effect for the group of compliers

e In RDD, the compliers are those whose treatment status changed as we moved

the value of x; from just to the left of ¢y to just to the right of ¢



Balance — FONDEN running example

Next, we use local polynomial methods to estimate the first stage, the ITT, and the
LATE. The specific estimating equations are as follows:

(1) Fmt = oo+ O‘lAB()VE‘mt + g(Rmr) + Vings

) Yo

[30 + ﬁlABOVEmr + g(Rmt) + Emn

where F,, is a binary variable that takes the value of one when a municipality
is eligible for Fonden. The variable Y,,, represents our measure of the change in
local economic activity (log difference night lights) for municipality m affected
by a hydrometeorological event in year t. The variable g(R,,) captures the rela-
tionship between the outcome and the running variable R,,,. The variable ABOVE
is an indicator variable for observed rainfall exceeding the heavy rainfall thresh-
old. Finally, ¢,, and v,,, are error terms. The parameters of interest are the first-
stage estimate ¢ in equation (1), the ITT estimate 3, in equation (2), and the ratio
Trrp = 1/6, which can be interpreted as the LATE under some additional
assumptions.'®



Balance — FONDEN running example

TaBLE 2—IMPACT OF FONDEN ON NIGHT LIGHTS

() 0]

Panel A. First stage (o) 0.227 0.230
p-value <0.001 <0.001
CI 95 percent [0.12,0.28] [0.13,0.31]
Panel B. Intention-to-Treat (3,) 0.059 0.072
p-value 0.010 0.006
CI 95 percent [0.02,0.12] [0.02,0.13]
Panel C. LATE (Tggp) 0.260 0.313
p-value 0.009 0.011
CI 95 percent [0.08,0.56] [0.08,0.61]
Bandwidth (mm) 57.9 40.0
Observations (left|right) 1,038]525 7411410

Notes: Panel A presents estimates of equation (1), where the dependent variable is
eligibility for Fonden resources. Panel B presents estimates of equation (2), where
the dependent variable is the log difference in night lights between the 12 months
before and after a disaster. Panel C reports the LATE estimate of eligibility for Fonden
resources on night lights computed as the ratio of the ITT estimate to the first-stage
coefficient. Estimates in panels A and B are derived using a triangular kernel and local
linear polynomial. The bandwidth selection algorithm used in column 1 is optimal for
point estimation; the selection algorithm in column 2 is optimal for inference of con-
fidence intervals. The p-values and 95 percent confidence intervals reported are con-
structed using robust bias correction and clustering at the municipal level.



Visualization




Pictures, pictures and more pictures

e RDD is visually intense
e Eyeball tests are rampant (and deservedly) in RDD studies

e Let's review some of the graphs you have to include
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Outcomes

1. Outcome by running variable, (X;):

Construct bins and average the outcome within bins on both sides of the cutoff

Look at different bin sizes when constructing these graphs

e Plot the running variables, X;, on the horizontal axis and the average of Y; for each
bin on the vertical axis

Consider plotting a relatively flexible regression line on top of the bin means, but
some readers prefer an eyeball test without the regression line to avoid “priming”



Probability of treatment

2. Probability of treatment by running variable if fuzzy RDD
e In a fuzzy RDD, you also want to see that the treatment variable jumps at ¢y
e This tells you whether you have a first stage (“bite")

e Let's look at that again from earlier Hoekstra (2008) and enrollment at the flagship



McCrary Density

3. Density of the running variable

e One should plot the number of observations in each bin.

e This plot allows to investigate whether there is a discontinuity or heaping in the
distribution of the running variable at the threshold

e Heaping or discontinuities in the density suggest that people can manipulate their
running variable score

e This is an indirect test of the identifying assumption that each individual has
imprecise control over the assignment variable, which may violate smoothness



Balance pictures

4. Covariates by a running variable

e Construct a similar graph to the outcomes graph but use a noncollider covariate as
the “outcome”

e Balance implies smoothness through the cutoff, cg.

e If noncollider covariates jump at the cutoff, one is probably justified to reject that
potential outcomes aren’t also probably jumping there
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